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Abstract

Domain decomposition approaches require efficient interface techniques when fluids and structures are solved in

independent computational domains for aerospace applications. Fluid/structure interfacing techniques for solutions

from equations based on low-fidelity approaches that are in the linear domain are well advanced and are incorporated

in production codes NASTRAN and ASTROS. However, for computations involving high-fidelity equations such as

the Navier–Stokes for fluids and finite elements for structures, interface approaches are still under development. This

paper provides a technical overview of methods for interfacing flow solutions from the Euler/Navier–Stokes methods

with structural solutions using modal/finite-element methods. Validity of the methods is supported by previously

presented results. Published by Elsevier Science Ltd.

Keywords: Finite elements; Navier–Stokes; Computers; High fidelity; Aeroelasticity

1. Introduction

Aeroelasticity that involves strong coupling of fluids

and structures is an important element in the design of

aircraft. Methods to couple fluids and structures by

using low-fidelity methods such as the linear aerody-

namic flow equations coupled with the modal structural

equations are well advanced. Although these low-fidelity

approaches are used for preliminary design, they are not

adequate for the analysis of aircraft which can experi-

ence complex flow/structure interactions that require the

use of high-fidelity approaches. Supersonic transports

can experience vortex-induced aeroelastic oscillations [1]

and subsonic transports can experience transonic buffet

associated structural oscillations [2]. Both may experi-

ence a dip in flutter speed in the transonic regime. High-

fidelity equations such as the Euler/Navier–Stokes

(ENS) for fluids directly coupled with finite elements

(FEs) for structures are needed for accurate aeroelastic

computations for which these complex fluid/structure

interactions exist. Using these coupled methods, design

quantities such as structural stresses can be directly

computed. Using high-fidelity equations involves addi-

tional complexities from numerics such as higher-order

terms. Therefore the coupling process is more elaborate

when using high-fidelity methods than it is for calcula-

tions using linear methods.

In recent years, significant advances have been made

for single disciplines in both computational fluid dy-

namics (CFD) using finite-difference (FD) approaches

[3] and computational structural mechanics (CSM) using

finite-element methods (see Chapter I of Ref. [4]). For

aerospace vehicles, structures are dominated by internal

discontinuous members such as spars, ribs, panels, and

bulkheads. The FE method, which is fundamentally

based on discretization along physical boundaries of

different structural components, has proven to be com-

putationally efficient for solving aerospace structures

problems. The external aerodynamics of aerospace ve-

hicles is dominated by field discontinuities such as shock

waves and flow separations. FD computational methods
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have proven to be efficient for solving such flow prob-

lems.

In this paper, different types of fluid–structure inter-

faces and their pros and cons will be discussed. The

discussions in the paper mainly deal with coupling of

solutions from the ENS flow equations with different

structural models by using the domain-decomposition

approach suitable for both static and dynamic cases.

2. Domain decomposition approach

When simulating aeroelasticity with coupled proce-

dures, it is common to deal with fluid equations in

Eulerian reference system and structural equations in a

Lagrangian system. The structural system is physically

much stiffer than the fluid system, and the numerical

matrices associated with structures are orders of mag-

nitude stiffer than those associated with fluids. There-

fore, it is numerically inefficient or even impossible to

solve both systems using a single numerical scheme (see

section on sub-structures in Ref. [5]).

Guruswamy and Yang [6] presented a numerical

approach to solve this problem for two-dimensional

airfoils by independently modeling fluids using the FD-

based transonic small-perturbation (TSP) equations and

structures using FE equations. The solutions were cou-

pled only at the boundary interfaces between fluids and

structures. The coupling of solutions at boundaries can

be done either explicitly or implicitly. This domain-de-

composition approach allows one to take full advantage

of state-of-the-art numerical procedures for individual

disciplines. This coupling procedure has been extended

to three-dimensional problems and incorporated in

several advanced aeroelastic codes such as XTRAN3S

[7], ATRAN3S [8] and CAP-TSD [9] based on the TSP

theory. It was also demonstrated that the same tech-

nique could be extended to model the fluids with the

ENS equations on moving grids [10–12]. The coupled

fluid structure analysis procedure using domain-de-

composition approach is described in Section 3.

3. Coupled fluid structure analysis

Fig. 1 illustrates a time-accurate coupled fluid-struc-

ture aeroelastic analysis process. It is step-by-step time-

integration procedure. Fluid and structural solutions

are independently computed and the information is

passed between them at common boundaries. At every

time step the pressure data (Cp) from CFD are mapped

on to structural grid points and force vector fZg is

computed. Using Z, the structural displacements are

computed from CSD analysis. Then deflections are

mapped onto fluid grids that move accordingly. The

interface techniques depend on the type of structural

modeling.

Fluids and structural domains can be modeled at

various levels of complexity both in physics and geom-

etry. For design, aerodynamic data may be used at

several levels of fidelity starting from the low-fidelity

look-up tables to the high fidelity Navier–Stokes solu-

tions. Similarly for structures, the data can be obtained

starting from the low fidelity assumed shape functions to

detailed three-dimensional FEs. As the fidelity of mod-

eling increases, it becomes more difficult to handle

complex geometry. Fig. 2 illustrates the typical levels of

modeling complexities involved both for fluids and

structures. Interfacing techniques depend on the levels of

fidelity in both fluids and structures. In this paper, in-

terfacing techniques between the ENS solutions and

various levels of structural models are discussed.

Maintaining accuracy while transferring data be-

tween fluids and structures is important in order to ob-

tain correct aeroelastic results. This can be accomplished

with engineering accuracy by interpolations if fine grids

are used both for structures and fluids. In these cases,

the structural planform needs to be the same as the

aerodynamic planform. Accuracy can be improved by

Fig. 1. Coupled fluid structural analysis.

Fig. 2. Varying levels of fidelity in modeling for fluids and

structures.
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using higher-order interpolations. Often the structural

mesh is either irregular, coarse or incomplete with re-

spect to the fluid grid. Still, accurate interfacing can be

achieved by balancing the loads and moments between

fluid grids and structural nodes by using the consistent

load approach [4,5] based on conservation of work.

In this paper, consistent load, virtual-surface (VS) and

moment-conservation approaches are presented for

beam, plate, and wing box FE structural models, re-

spectively.

4. Modal analysis

Modal representation of structures, based on the

Raleigh–Ritz approach, is common in aeroelasticity [13].

The modal approach can compute accurate responses if

an adequate number of modes are selected. The number

of structural equations required in coupled calculations

using the modal approach are typically an order of

magnitude less than when direct FEM is used. Both

static and dynamic responses can be accurately com-

puted by using the modal approach in order to predict

aeroelastic phenomena such as flutter [10].

The modal data for any configuration can be ex-

tracted by either ground vibration tests or FE analysis.

Either approach can obtain modal data on a well-or-

ganized grid system. For example, the modal data can be

obtained for simple plate-type wings on a modal grid for

which grid lines run parallel to stream lines and along

constant percentage chord lines as shown in Fig. 3. In

the same figure, a wing-fitted FD surface grid is also

shown. Ref. [14] gives a comprehensive summary of

methods used to interface modal structures with fluids.

In this paper interpolation and area-coordinate ap-

proaches that are suitable for the ENS equations are

presented.

4.1. Interpolation approach

For modal structures, interpolation can be used to

transfer the data between fluids and structures. The or-

der of accuracy can be increased either by increasing the

grid densities or by increasing the order of interpola-

tions. A procedure based on bi-linear interpolation is

incorporated in the ENSAERO-WING code [12]. Since

the same CFD and modal surface grids are used

throughout the integration process, interpolation at

every time step is avoided by mapping the modal data to

the CFD surface grid data in the pre-processing stage.

During integration, all structural computations are

performed directly on the CFD surface grid which adds

to the numerical efficiency of ENSAERO. For example,

aeroelastic cases using ENSAERO run at 440 MFLOPS

on a single Cray C-90 processor which is almost same as

running steady state cases over rigid configurations.

Using the modal approach, static and dynamic re-

sponses are computed for several wings. One such wing

is the advanced research wing (ARW) shown in Fig. 4

that was tested at the NASA Langley Research Center

[15]. This wing was built as an aeroelastic wing with

skin-spar-rib construction. Modal data were extracted

on a 40� 30 grid. Static deflections were computed

using bi-linear interpolation and different CFD surface

grid densities. It was found that a CFD surface grid

adequate to resolve flow characteristics was also ade-

quate for fluid/structure interpolation. Fig. 5 shows the

static pressures and deflections computed for the ARW

where CFD surface grids points 3500 and 4500 were

used. The differences in results for the two grid sizes

were negligible [16].

Based on the interpolation approach static aeroelas-

tic deflections are computed for a wing-body configu-

ration using ENS3DE [17] code that uses structured

patched grid technology and the results are validated

with wind-tunnel data.

4.2. Area coordinate approach

Quite often the modal grid is same as the original

FEM grid which can be quite irregular. In that case, the

best approach is to fit a triangular mesh to the irregular

FEM mesh. Fig. 6 illustrates such a process. In the ad-

vanced version of ENSAERO a three-dimensional in-

terpolation scheme between an unstructured triangular

modal grid and structured CFD surface is incorporated.
Fig. 3. Typical finite difference and FE grids suitable for bi-

linear interpolation.

Fig. 4. ARW tested at Langley’s wind tunnel.
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In this process, fluid grid points are identified with

respect to modal structural nodes i, j and k as shown in

Fig. 7. The force at a fluid grid point is computed using

the control area associated with that point. From the

total force F at a given fluid point, the structural forces

Fi, Fj and Fk are computed using

Fi ¼
Fa

ðaþ bþ cÞ ; Fj ¼
Fb

ðaþ bþ cÞ ; Fk ¼
Fc

ðaþ bþ cÞ
ð1Þ

and

F ¼ Fi þ Fj þ Fk

where a, b, and c are areas of the subtriangles in Fig. 7.

This procedure is repeated for all fluid grid points.

The displacements wi, wj, and wk from structural

analysis, are interpolated to the fluid grid point using

d ¼ wjaþ wjbþ wkc
ðaþ bþ cÞ ð2Þ

This approach is successfully used to interface data

between NASTD Navier–Stokes code and NASTRAN

for aeroelastic computations about F/A-18 stabilator

and results are shown in Fig. 8 [18].

5. Beam structures

Transport-type configurations with high aspect ratio

wings are commonly modeled by beam FEs. In this case,Fig. 7. Interpolation based on triangular area coordinates.

Fig. 5. Validation of fluid/structural interface for modal approach.

Fig. 6. Procedure to handle irregular modal grid.
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the sectional lifts and moments are computed along the

elastic axis of the body and wing. From the distributed

load pðxÞ, the work-equivalent loads corresponding

to nodal displacements w (transverse displacement), a

(twist), F (bending) as illustrated in Fig. 9, are computed

using the FE approach [4].

The unknown work-equivalent or consistent nodal

loads are computed by equating the work done by nodal

loads through nodal displacements to the work done

by distributed load through distributed displacements.

Using the FEM approach the consistent load vector can

be computed using

Fi ¼
Z

pðxÞfiðxÞdx 0 < x < 1 ð3Þ

where i denotes the degree of freedom (DOF), pðxÞ is the
distributed load and fiðxÞ is the ith shape function (see

Chapter 5, Section 4 of Ref. [4] for more details). Using

this approach, computations were made on a wing-body

configuration and results are presented in Ref. [19]. In

Ref. [20], results are presented for the ARW [15] wing

using beam elements. Computed results compare well

with the experimental data [15].

6. Plate/shell FEs

Some aerospace configurations can be modeled using

plate and shell elements. Typical examples are fighter

aircraft and launch vehicles. Quite often wind tunnel

models are built out of solid material and can be mod-

eled using plate/shell elements. In this case, both simple

interpolation approaches that balance loads as well as

the higher order interface techniques that conserve the

work done by aerodynamic forces can be used. Such

approaches were developed earlier in the context of

linear aerodynamics and are reported in Refs. [21–25].

In any interpolation approach it is necessary to

identify relative positions of the fluid and structural grid

points. When the data are well organized with similar

patterns both for fluids and structures as shown in Fig.

3, a simple search algorithm is adequate to find relative

positions and interpolate the data. However, such ap-

proaches fail when geometry becomes more complex

than a wing, say, even for a wing body configuration. In

such cases it is difficult to have a consistent approach for

both fluids and structural data.

6.1. Node-to-element approach

A wing-body configuration can be modeled by shell/

plate elements such as the quadrilateral element shown

in Fig. 9. The FE grids are generated using iso-para-

metric elements. For example, (x; y) coordinates the

quadrilateral element shown in Fig. 10 can be repre-

sented by

x ¼
P

Niðn; gÞxi 1 < i < 4
y ¼

P
Niðn; gÞyi 1 < i < 4

ð4Þ

And the planar displacements u and v are expressed as

Fig. 9. Beam FEM with consistent loads.

Fig. 10. Isoparametric quadrilateral shell/element.

Fig. 8. Initial and final deflected position (magnified 10X) of

F/A-18 stabilator.
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u ¼
P

Niðn; gÞui 1 < i < 4
v ¼

P
Niðn; gÞvi 1 < i < 4

ð5Þ

where

N1ðn; gÞ ¼ 1=4ð1� nÞð1� gÞ
N2ðn; gÞ ¼ 1=4ð1þ nÞð1� gÞ
N3ðn; gÞ ¼ 1=4ð1þ nÞð1þ gÞ
N4ðn; gÞ ¼ 1=4ð1� nÞð1þ gÞ

ð6Þ

The coordinate locations (x; y) of fluid-surface grid

points can be defined with respect to the FE vertices (i, j,

k and l) on the surface. For known (x; y), the equivalent
(n; g) values in the rectangular mapped domain can

be computed using the numerical inverse mapping

technique developed by Murti and Valliappan [25]. The

aerodynamic force at a fluid grid point (x; y) location can

be proportionately distributed to structural nodes using

(n; g) values. Also the deformation obtained by FEM

at nodes can be interpolated to fluid grid points using

Eq. (5). In addition, linear extrapolation can be used

to compute the deformation at the points of the

fluid-surface grid which are not on the surface of the

structure.

This approach is successfully applied for a wing-body

configuration in Ref. [26]. An alternative approach

based on the boundary element concept is presented in

Ref. [27] and results are demonstrated for a blended

wing-body configuration. In Ref. [28] a bi-cubic surface

spline approach is suggested to transfer data between

fluids and structures. In Ref. [29] an interface method to

map aerodynamic forces computed on a wing surface to

flat plate type structures is presented by accounting for

the force transformations due to airfoil section thick-

ness. Such methods are useful when moderately thick

wings are modeled using equivalent plates.

6.2. Virtual surface method

One of the main efforts after selecting the FE model

for the structure entails computing the global force

vector fZg of Fig. 1 which is computed by solving the

ENS equations at given time, t. First, the pressures are

computed at all surface grid points. The forces corre-

sponding to nodal DOF can be accurately computed

using the FE nodal fluid-structural interfaces as dis-

cussed in the following section.

In aeroelastic analysis, it is necessary to represent

equivalent aerodynamic loads at the structural nodal

points and to represent deformed structural configura-

tions at the aerodynamic grid points. In the domain

decomposition approach, coupling between the fluid

and structural domains is achieved by exchanging the

boundary data such as aerodynamic pressures and

structural deflections at each time step.

The previous interpolation and area coordinate ap-

proaches discussed in Sections 4.1 and 4.2 are also

known as the lumped load (LL) approach from a

structural analyst perspective. In the LL approach, the

force acting on each element of the structural mesh is

first calculated, and then the element nodal force vector

is obtained by equally distributing the total force. The

global force vector is obtained by assembling the nodal

force vectors of each element. In addition, the deformed

configuration of the CFD grid at the surface is obtained

by interpolating nodal displacements at the FE nodes.

This approach does not conserve the work done by the

aerodynamic forces and needs fine grids for both fluids

and structures to give accurate results.

In the VS approach, a mapping matrix developed by

Appa [21] and Appa et al. [23] is selected to accurately

exchange data between the fluid and structural interface

boundaries. The reason for selecting the method of

Appa and colleagues is that the mapping matrix is

general enough to accommodate changes in fluid and

structural models easily. In addition, this approach

conserves the work done by aerodynamic forces when

obtaining the global nodal force vector.

The VS method introduces a VS between the CFD

surface grid and the FE mesh for the wing. This VS is

discretized by a number of FEs, which are not neces-

sarily the same elements used in the structural surface

modeling. By forcing the deformed VS to pass through

the given data points of the deformed structure, a

mapping matrix relating displacements at structural and

aerodynamic grid points is derived as

½T 
 ¼ ½Wa
ðd�1½K
 þ ½Ws
T½Ws
Þ�1 ð7Þ

where [K] is the free–free stiffness of the VS, Ws is a

displacement mapping from VS to structural grids, Wa

displacement mapping from VS to aerodynamic grids,

and d is the penalty parameter (see Refs. [21,23] for more

details).

Then, the displacement vector at the aerodynamic

grid, qa, can be expressed in terms of the displacement

vector at the structural nodal points, qs as

qa ¼ ½T 
fqsg ð8Þ

From the principle of virtual work, the nodal force

vector, fZsg, can be obtained as

fZsg ¼ ½T 
TfZag ð9Þ

where fZag is the force vector on the aerodynamic grids.

This method is illustrated in Fig. 11.

To demonstrate aeroelastic computations, a typical

fighter-type wing is selected. For this wing transonic

flutter data are available from wind tunnel tests [30]. In

this computation, the flow field is discretized for Euler-

type solutions using a C–H grid topology of size
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151� 30� 35. The wing structure was modeled using

100 ANS4 elements. Ten elements each were assigned

along the chordwise and spanwise directions. To dis-

cretize the VS, four-noded isoparametric elements are

used.

The accuracy of the results can depend on the type of

interfaces between fluids and structures. The simple LL

and the more accurate VS interfaces are compared to

each other. Results are shown in Fig. 12. For a given

dynamic pressure of 1.0 lbs/in.2 and initial acceleration

of 1:0� 105 in./s, the time history of total lift on the

wing is presented in Fig. 12. The total lift obtained by

integrating the pressure coefficients at CFD grid points

is also shown in the figure.

The total lift using CFD grid points is more accurate

than those from the VS and LL methods. Both VS and

LL approaches obtain the total lift by summing the

forces at the FE nodal points, which was transformed

from the pressure coefficients through interfaces. The VS

approach transfers pressure data more accurately than

the LL approach. The LL approach shows that the re-

sponse around peaks deviates from the CFD solution.

For this case the LL approach shows reasonable

agreement with the VS approach.

Based on the VS approach, the flutter dynamic

pressure of the wing was computed using response

analysis as shown in Fig. 13. The computed flutter dy-

namic pressure is 0.85 lbs/in.2 compared to the wind

tunnel measurement of 0.91 lbs/in.2 Given the uncer-

tainties in the model a 6.5% error in predicting the

transonic flutter boundary is reasonable. Based on the

results shown in Fig. 12 the LL approach can also give

reasonably accurate results.

Among all methods presented to date the VS ap-

proach has strong potential for general applications

dealing with more complex geometries and complete

equations. Application of this approach for wing-body

configurations by using the Navier–Stokes equations is

demonstrated in Ref. [31] for moderately separated

Fig. 11. Fluid–structure interface using transfer functions.

Fig. 12. Comparison of total lift responses.
Fig. 13. Computation of flutter boundary (expt. dynamic

pressure p ¼ 0:91 psi).
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turbulent flows. The accuracy of VS approach can be

further verified using tests described in Refs. [32,33].

7. Wing-box FEM model

Most transport aircraft are built using spars, ribs,

skin and bulk-head type components. For the best ac-

curacy, it is necessary to model them directly using FEs.

This will avoid truncation errors caused by other simpler

approaches such as the modal approach. Fig. 14 il-

lustrates the planform and internal model of a typical

spar-rib-skin construction also commonly known as

a ‘‘wing-box model’’. Only the components between

spars are normally considered for structural analysis.

The rest of the portions near the leading and trailing

edges are treated as dead weight.

However, from an aerodynamic point of view the

complete surface needs to be considered. This leads to

a mismatch in the surface definitions between fluids

and structures. An accurate procedure that accounts for

twist correction (compensation) was developed in

Ref. [34] and is briefly described here. Lumping forces

at structural nodes balances the total load but not

the bending and twist moments. The moments can

be conserved by computing the structural loads with

the following system of equations with respect to fi,
i ¼ 1–3.

X3

i¼1

fi ¼ fa;
X3

i¼1

fixi ¼ faxa;
X3

i¼1

fiyi ¼ faya ð10Þ

where ‘a’ denotes aerodynamic grid point, ‘i’ represents

three non-colinear structural nodes and ‘x’ and ‘y’ are

coordinates distances from reference axes.

The deflections computed at FEM nodes are trans-

ferred to the fluid grid points using transformation

functions. It is assumed that the wing is chordwise rigid.

The aeroelastic deflections are reduced to a set of leading

edge deflections and rotations about the leading edge as

shown in Fig. 15.

The present method was demonstrated in Ref. [34]

for a sample wing shown in Fig. 16. Computations

were performed at M ¼ 0:90 and a ¼ 4� using a NACA

64A10 airfoil section. The fluid is modeled using a C–H

grid of size 151� 25� 35. The differences in span-wise

displacements using simple load-lumping and mo-

ment conservation are shown in Fig. 17. Because of

significant differences between fluid and structural grid

sizes, corrections for moments strongly influence the

results.

A procedure that combines the consistent-load ap-

proach presented for plate elements in Section 6.1 and

twist-correction approach presented in this section is

proposed in Ref. [35] for interfacing data between fluids

and structures.

8. Detailed FE model

Complete FE models of structures are needed for

final aircraft design. In this case the interior of the FEM

grid can be very irregular as shown in Fig. 18. Surface

elements may consists of either triangular or quadrilat-

Fig. 15. Transfer of deflection to aerodynamic grid points.

Fig. 14. Typical wing-box FEM model.
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eral skin elements. Sometimes, near the root, solid ele-

ments may be used. For such configurations the first step

is to create a triangular surface mesh that has common

nodes with the surface FE nodal points. Next, either the

area coordinate method (Fig. 8) or the more accurate VS

method can be used to transfer deformations and loads.

A three-dimensional area coordinate type of interface is

used to directly couple data between NASTRAN and

ENSAERO [36]. Figs. 19 and 20 illustrate results for a

wing-body configuration.

Fig. 16. Aerodynamic planform and primary structural arrangements of a wing.

Fig. 17. Effect of moment correction on wing deformation.

Fig. 18. Typical FE model of a real wing.
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All coupled methods described so far in the paper

dealt with using structured grids for fluids and un-

structured grids for structures. Efficient fluid/structure

coupled method based on unstructured grids both for

fluids and structures is implemented in computer code

ADINA [37].

9. Conclusions

Several methods that are suitable to interface the

Navier–Stokes/Euler equations based fluids solutions

with the FEM/modal based structural analysis is pre-

sented. The interface depends mainly on the type of

structural modeling. The accuracy of the interfacing can

be increased either by using fine surface structural

meshes similar to fluids grids or using higher order in-

terpolations such as splines. Interfacing approaches

that conserve work show improved accuracy over the

lumped load approach.
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